電子物性の基礎
垣谷公徳（17号館3階）
http://sstxp.ee.ous.ac.jp/

参考書
阿部 正紀
基礎電子物性工学
量子力学の基本と応用
斉藤 博他
入門 固体物性
基礎からデバイスまで
チャールズ キッテル
固体物理学入門

電子・原子・分子・結晶
・あらゆる物質は原子の集合で構成される
・分子：1つ以上の原子の集まり
・結晶：規則正しい分子（原子）の配列
⇔気体／液体／非晶質（アモルファス）
・物質の多様な性質
原子間の結合や集合の仕方の多様性に由来

原子の種類
http://www.ptable.com/

電子の周期表

原子の構造

原子

電子
原子核
陽子
中性子
He(ヘリウム)原子

原子の構造

粒子
電気量 [As]
電荷
質量 [kg]
質量比

陽子
+1.602×10⁻¹⁹
+e
1.673×10⁻²⁷
1840
中性子
0
0
1.675×10⁻²⁷
1840
電子
−1.602×10⁻¹⁹
−e
9.109×10⁻³¹
1

e: 電荷素量

・電気的中性原子の陽子数と電子数は等しい
・原子の質量は陽子と中性子でほぼ決まる
原子の構造

<table>
<thead>
<tr>
<th>元素記号</th>
<th>元素名</th>
<th>ケイ素</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>炭素</td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>ケイ素</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>原子番号</th>
<th>陽子数</th>
<th>中性子数</th>
<th>質量数</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>6</td>
<td>6</td>
<td>12.01</td>
</tr>
<tr>
<td>Si</td>
<td>14</td>
<td>14</td>
<td>28.09</td>
</tr>
</tbody>
</table>

イオン

陽イオン：陽子数>電子数 C⁺, C²⁺
陰イオン：陽子数<電子数 C⁻, C²⁻

物質の性質

物質の性質は、主に原子の配列（並び方）と電子の運動状態により、決定される

電子の運動状態

- 運動エネルギー
- 位置エネルギー（ポテンシャル）
- 運動量
- 角運動量

電荷と電場

- 電荷(Q)から距離rの位置での電場 (E)
- 距離rの位置の電荷(Q')に働く力 (F)
- 電荷(Q')に対するポテンシャル (V(r))

原子番号 Z の原子核による
電子に対するポテンシャル

\[V(r) = -\frac{1}{4\pi\varepsilon_0} \frac{Ze^2}{r} \]

電流と磁場

- 電荷の運動→電流
- 電流→磁場
- 磁場中の電荷にかかる力（ローレンツ力）

\[F = qv \times B \]
\[B = \mu H \]

電子物性

- 電磁気学（電磁界理論）
- 量子力学
- 統計力学（量子統計）

電子の運動状態 ➔ 物質の性質
古典論の限界

プランクの黒体輻射
光電効果
コンプトン散乱
電子線回折
水素原子模型
固体の比熱

全てのものは粒子と波動の両方の性質を併せ持つ

波動の基本的な性質

\[\varphi(x, t) = A \sin \left(\frac{2\pi x}{\lambda} - \frac{2\pi t}{T} \right) \]

・波数: 長さ 2π の中に含まれる山(谷)の数
\[k \equiv \frac{2\pi}{\lambda} \]

\[\varphi(x, t) = A \sin \left(kx - \frac{2\pi t}{T} \right) \]

波動の基本的な性質

\[\varphi(x, t) = A \sin \left(\frac{2\pi x}{\lambda} - \frac{2\pi t}{T} \right) \]

周波数（振動数）: 単位時間当たりの振動数
\[\nu = \frac{1}{T} \]

・角振動数
\[\omega = \frac{2\pi}{T} = 2\pi \nu \]

\[\varphi(x, t) = A \sin (kx - \omega t) \]

三次元空間の波動

波数ベクトル \(\vec{k} \)
大きさ: \(|\vec{k}| = \frac{2\pi}{\lambda} \)
方向: 波動の進行方向
複素波動関数(平面波)
\[\Psi(\vec{r}, t) = A e^{i(\vec{k} \cdot \vec{r} - \omega t)} \]